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Dr. Chase has taught mechanical engineering at the Brigham Young University since 1968.  An advo-
cate of computer technology, he has served as a consultant to industry on numerous projects involving
engineering software applications. He served as a reviewer of the Motorola Six Sigma Program at its
inception. He also served on an NSF select panel for evaluating tolerance analysis research needs. In
1984, he founded the ADCATS consortium for the development of CAD-based tools for tolerance analy-
sis of mechanical assemblies. More than 30 sponsored graduate theses have been devoted to the devel-
opment of the tolerance technology contained in the CATS software. Several faculty and students are
currently involved in a broad spectrum of research projects and industry case studies on statistical
variation analysis. Past and current sponsors include Allied Signal, Boeing, Cummins, FMC, Ford, GE,
HP, Hughes, IBM, Motorola, Sandia Labs, Texas Instruments, and the US Navy.

13.1 Introduction

In this chapter, an alternative method to the one described in Chapter 12 is presented. This method is
based on vector loop assembly models, but with the following distinct differences:
1. A set of rules is provided to assure a valid set of vector loops is obtained. The loops include only those

controlled dimensions that contribute to assembly variation. All dimensions are datum referenced.

2. A set of kinematic modeling elements is introduced to assist in identifying the adjustable dimensions
within the assembly that change to accommodate dimensional variations.
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3. In addition to describing variation in assembly gaps, a comprehensive set of assembly tolerance
requirements is introduced, which are useful to designers as performance requirements.

4. Algebraic manipulation to derive an explicit expression for the assembly feature is eliminated. This
method operates equally well on implicit assembly equations. The loop equations are solved the same
way every time, so it is well suited for computer automation.

This chapter distinguishes itself from Chapter 12 by replacing differentiation of a complicated assem-
bly expression with a single matrix operation, which determines all necessary tolerance sensitivities simul-
taneously. Since the matrix only contains sines and cosines, derivations are simple. As with the method
shown in Chapter 12, this method may also include other sources of variation, such as position tolerance,
parallelism error, or profile variations.

13.2 Three Sources of Variation in Assemblies

There are three main sources of variation, which must be accounted for in mechanical assemblies:
1. Dimensional variations (lengths and angles)
2. Geometric form and feature variations (position, roundness, angularity, etc.)
3. Kinematic variations (small adjustments between mating parts)

Dimensional and form variations are the result of variations in the manufacturing processes or raw
materials used in production. Kinematic variations occur at assembly time, whenever small adjustments
between mating parts are required to accommodate dimensional or form variations.

The two-component assembly shown in Figs. 13-1 and 13-2 demonstrates the relationship between
dimensional and form variations in an assembly and the small kinematic adjustments that occur at assem-
bly time. The parts are assembled by inserting the cylinder into the groove until it makes contact on the
two sides of the groove. For each set of parts, the distance U will adjust to accommodate the current value
of dimensions A, R, and θ. The assembly resultant U represents the nominal position of the cylinder, while
U + ∆U represents the position of the cylinder when the variations ∆A, ∆R, and ∆θ are present. This
adjustability of the assembly describes a kinematic constraint, or a closure constraint on the assembly.
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Figure 13-1  Kinematic adjustment due to
component dimension variations

Figure 13-2  Adjustment due to geometric
shape variations
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It is important to distinguish between component and assembly dimensions in Fig. 13-1. Whereas A,
R, and θ   are component dimensions, subject to random process variations, distance U is not a component
dimension. It is a resultant assembly dimension. U is not a manufacturing process variable, it is a kinematic
assembly variable. Variations in U can only be measured after the parts are assembled. A, R, and θ  are the
independent random sources of variation in this assembly. They are the inputs.  U is a dependent assem-
bly variable. It is the output.

Fig. 13-2  illustrates the same assembly with exaggerated geometric feature variations.  For production
parts, the contact surfaces are not really flat and the cylinder is not perfectly round. The pattern of surface
waviness will differ from one part to the next. In this assembly, the cylinder makes contact on a peak of the
lower contact surface, while the next assembly may make contact in a valley. Similarly, the lower surface is
in contact with a lobe of the cylinder, while the next assembly may make contact between lobes.

Local surface variations such as these can propagate through an assembly and accumulate just as
size variations do. Thus, in a complete assembly model all three sources of variation must be accounted
for to assure realistic and accurate results.

13.3 Example 2-D Assembly – Stacked Blocks

The assembly in Fig. 13-3 illustrates the tolerance modeling process. It consists of three parts: a Block,
resting on a Frame, is used to position a Cylinder, as shown. There are four different mating surface
conditions that must be modeled. The gap G, between the top of the Cylinder and the Frame, is the critical
assembly feature we wish to control. Dimensions a through f, r, R, and θ are dimensions of component
features that contribute to assembly variation. Tolerances are estimates of the manufacturing process
variations. Dimension g is a utility dimension used in locating gap G.

b

e

c

d

f

Cylinder

Block

Frame

a

r

R

θ

G
g

Dim
a

b
c
d

e
f
g

r
R
θ

Nominal
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±0.3 mm
±0.3
±0.3

±0.3
±0.3
±0.5

±0
±0.1
±0.3
±1.0 deg

Figure 13-3  Stacked blocks assembly



13-4     Chapter Thirteen

13.4 Steps in Creating an Assembly Tolerance Model

Step 1. Create an assembly graph

An assembly graph is a simplified diagram representing an assembly. All geometry and dimensions are
removed. Only the mating conditions between the parts are shown. Each part is shown as a balloon. The

Cylinder

BlockFrame
Loop 1

Loop 2
Loop 3Gap

Figure 13-4  Assembly graph of the
stacked blocks assembly

contacts or joints between mating parts are shown as arcs or edges joining the corresponding parts.
Fig. 13-4 shows the assembly graph for the sample problem.

The assembly graph lets you see the relationship between the parts in the assembly. It also reveals by
inspection how many loops (dimension chains) will be required to build the tolerance model. Loops 1 and
2 are closed loop assembly constraints, which locate the Block and Cylinder relative to the Frame. Loop 3
is an open loop describing the assembly performance requirement. A systematic procedure for defining
the loops is illustrated in the steps that follow.

Symbols have been added to each edge identifying the type of contact between the mating surfaces.
Between the Block and Frame there are two contacts: plane-to-plane and edge-to-plane. These are called
Planar and Edge Slider joints, respectively, after their kinematic counterparts.

Only six kinematic joint types are required to describe the mating part contacts occurring in most 2-D
assemblies, as shown in Fig. 13-5. Arrows indicate the degrees of freedom for each joint, which permit
relative motion between the mating surfaces.  Also shown are two datum systems described in the next
section.

Planar Cylinder
Slider

Edge
Slider

Revolute

Parallel
Cylinders

Rectangular
Datum

Center
Datum

Rigid Figure 13-5  2-D kinematic joint and
datum types
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Step 2. Locate the datum reference frame for each part

Creating the tolerance model begins with an assembly drawing, preferably drawn to scale. Elements of the
tolerance model are added to the assembly drawing as an overlay. The first elements added are a set of
local coordinate systems, called Datum Reference Frames, or DRFs. Each part must have its own DRF.
The DRF is used to locate features on a part. You probably will choose the datum planes used to define the
parts. But, feel free to experiment. As you perform the tolerance analysis, you may find a different dimen-
sioning scheme that reduces the number of variation sources or is less sensitive to variation. Identifying
such effects and recommending appropriate design changes is one of the goals of tolerance analysis.

In Fig. 13-6, the Frame and Block both have rectangular DRFs located at their lower left corners, with
axes oriented along orthogonal surfaces. The Cylinder has a cylindrical DRF system at its center. A second
center datum has been used to locate the center of the large arc on the Block. This is called a feature datum
and it is used to locate a single feature on a part. It represents a virtual point on the Block and must be
located relative to the Block DRF.

U1

Cylinder

Block

Frame

θ

U2 U3

φ
1

φ
2

φ
3

G

DRF

DRF

DRF

Figure 13-6  Part datums and assembly
variables

Also shown in Fig. 13-6 are the assembly variables occurring within this assembly.  U1 , U2 , and U3 are
adjustable dimensions determined by the sliding contacts between the parts. φ1 , φ2 , and φ3 define the
adjustable rotations that occur in response to dimensional variations. Each of the adjustable dimensions
is associated with a kinematic joint. Dimension G is the gap whose variation must be controlled by setting
appropriate tolerances on the component dimensions.

Step 3. Locate kinematic joints and create datum paths

In Fig. 13-7, the four kinematic joints in the assembly are located at points of contact and oriented such
that the joint axes align with the adjustable assembly dimensions (called the joint degrees of freedom).
This is done by inspection of the contact surfaces.  There are simple modeling rules for each joint type.
Joint 1 is an edge slider. It represents an edge contacting a planar surface. It has two degrees of freedom:
it can slide along the contact plane (U2) and rotate relative to the contact point (φ3). Of course, it is
constrained not to slide or rotate by contact with mating parts, but a change in dimensions a, b, c, d, or θ
will cause U2 and φ3 to adjust accordingly.
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Figure 13-7  Datum paths for Joints 1
and 2

Joint 2 is a planar joint describing sliding contact between two planes. U3 locates a reference point on
the contacting surface relative to the Block DRF. U3 is constrained by the corner of the Block resting
against the vertical wall of the Frame.

In Fig. 13-8, Joint 3 locates the contact point between the Cylinder and the Frame. A cylinder slider has
two degrees of freedom: U1 is in the sliding plane and φ1 is measured at the center datum of the Cylinder.
Joint 4 represents contact between two parallel cylinders. The point of contact on the Cylinder is located
by φ1; on the Block, by φ2. Joints 3 and 4 are similarly constrained. However, changes in component
dimensions cause adjustments in the points of contact from one assembly to the next.

φ
1

Block

Frame

θ

φ
2

DRF

DRF

Joint 3 Cylinder

a

e

R

r

U1

Joint 4

r

DRF

Figure 13-8  Datum paths for Joints 3
and 4
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The vectors overlaid on Figs. 13-7 and 13-8 are called the datum paths. A datum path is a chain of
dimensions that locates the point of contact at a joint with respect to a part DRF. For example, Joint 2 in Fig.
13-7 joins the Block to the Frame. The point of contact must be defined from both the Frame and Block
DRFs. There are two vector paths that leave Joint 2. U3 lies on the sliding plane and points to the Block
DRF.  Vectors c and b point to the Frame DRF. The two datum paths for Joint 1 are: vectors U2  and a leading
to the Frame DRF, and arc radius R and vector e, leading to the Block DRF. In Fig. 13-8, Joint 3 is located
by radius r pointing to the Cylinder DRF, and U1 and a defining the path to the Frame DRF. The contact
point for Joint 4 is located by a second radius r pointing to the Cylinder DRF and arc radius R and e leading
to the Block DRF.

Modeling rules define the path a vector loop must follow to cross a joint. Fig. 13-9 shows the correct
vector paths for crossing four 2-D joints. The rule states that the loop must enter and exit a joint through
the local joint datums. For the Planar and Edge Slider joints, a vector U (either incoming or outgoing) must
lie in the sliding plane. Local Datum 2 represents a reference point on the sliding plane, from which the
contact point is located. For the Cylindrical Slider joint, the incoming vector passes through center datum
of the cylinder, follows a radius vector to the contact point and leaves through a vector in the sliding
plane. The path through the parallel cylinder joint passes from the center datum of one cylinder to the
center datum of the other, passing through the contact point and two colinear radii in between.

from
Datum 1

φ

Datum 2 U

Edge Slider

Datum 2

from
Datum 1

U

Planar

Datum 1

Datum 2
φ

U

Cylindrical Slider

R1

Parallel Cylinders

Datum 1

Datum 2
φ

R1

R2

Figure 13-9  2-D vector path through the joint contact point

As we created the two datum paths from each joint, we were in fact creating the incoming and
outgoing vectors for each joint. Although they were both drawn as outgoing vector paths, when we
combine them to form the vector loops, one of the datum paths will be reversed in direction to correspond
to the vector loop direction.

Each joint introduces kinematic variables into the assembly, which must be included in the vector
model. The rules assure that the kinematic variables introduced by each joint are included in the loop,
namely, the vector U in each sliding plane, and the relative angle φ.
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Each datum path must follow controlled engineering dimensions or adjustable assembly dimensions.
This is a critical task, as it determines which dimensions will be included in the tolerance analysis. All joint
degrees of freedom must also be included in the datum paths. They are the unknown variations in the
assembly tolerance analysis.

Step 4. Create vector loops

Vector loops define the assembly constraints that locate the parts of the assembly relative to each other.
The vectors represent the dimensions that contribute to tolerance stackup in the assembly. The vectors
are joined tip-to-tail, forming a chain, passing through each part in the assembly in succession.

A vector loop must obey certain modeling rules as it passes through a part. It must:
• Enter through a joint
• Follow the datum path to the DRF
• Follow a second datum path leading to another joint, and

• Exit to the next adjacent part in the assembly

This is illustrated schematically in Fig. 13-10. Thus, vector loops are created by simply linking to-
gether the datum paths. By so doing, all the dimensions will be datum referenced.

Figure 13-10  2-D vector path across a
part

Additional modeling rules for vector loops include:
• Loops must pass through every part and every joint in the assembly.
• A single vector loop may not pass through the same part or the same joint twice, but it may start and

end in the same part.
• If a vector loop includes the exact same dimension twice, in opposite directions, the dimension is

redundant and must be omitted.
• There must be enough loops to solve for all of the kinematic variables (joint degrees of freedom). You

will need one loop for each of the three variables.

Two closed loops are required for the example assembly, as we saw in the assembly graph of Fig. 13-4. The
resulting loops are shown in Figs. 13-11 and 13-12. Notice how similar the loops are to the datum paths of Figs.
13-7 and 13-8. Also, notice that some of the vectors in the datum paths were reversed to keep all the vectors
in each loop going in the same direction.
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Figure 13-11   Assembly Loop 1
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Step 5. Add geometric variations

Geometric variations of form, orientation, and location can introduce variation into an assembly. Such
variations can accumulate statistically and propagate kinematically the same as size variations. The man-
ner in which geometric variation propagates across mating surfaces depends on the nature of the contact.
Fig. 13-13 illustrates this concept.

Nominal
circle

Tolerance
zone

Translational
variation

Cylinder on a plane surface Block on a plane surface

Rotational  variation

Tolerance
zone

Tolerance
zone

Figure 13-13  Propagation of 2-D translational and rotational variation due to surface waviness

Consider a cylinder on a plane, both of which are subject to surface waviness, represented by a
tolerance zone. As the two parts are brought together to be assembled, the cylinder could rest on the top
of a hill or down in a valley of a surface wave. Thus, for this case, the center of the cylinder will exhibit
translational variation from assembly-to-assembly in a direction normal to the surface. Similarly, the cylin-
der could be lobed, as shown in the figure, resulting in an additional vertical translation, depending on
whether the part rests on a lobe or in between.

In contrast to the cylinder/plane joint, the block on a plane shown in Fig. 13-13 exhibits rotational
variation. In the extreme case, one corner of the block could rest on a waviness peak, while the opposite
corner could be at the bottom of the valley. The magnitude of rotation would vary from assembly-to-
assembly. Waviness on the surface of the block would have a similar effect.

In general, for two mating surfaces, we would have two independent surface variations that introduce
variation into the assembly. How it propagates depends on the nature of the contact, that is, the type of
kinematic joint. While there is little or no published data on typical surface variations for manufacturing
processes, it is still instructive to insert estimates of variations and calculate the magnitude of their
possible contribution. Fig. 13-14 illustrates several estimated geometric variations added to the sample
assembly model. Only one variation is defined at each joint, since both mating surfaces have the same
sensitivity. Examining the percent contribution to the gap variation will enable us to determine which
surfaces should have a GD&T tolerance control.

Step 6. Define performance requirements

Performance requirements are engineering design requirements. They apply to assemblies of parts. In
tolerance analysis, they are the specified limits of variation of the assembly features that are critical to
product performance, sometimes called the key characteristics or critical feature tolerances. Several
examples were illustrated in Chapter 9 for an electric motor assembly. Simple fits between a bearing and
shaft, or a bearing and housing, would only involve two parts, while the radial and axial clearance between
the armature and housing would involve a tolerance stackup of several parts and dimensions.



Multi-Dimensional Tolerance Analysis (Automated Method)     13-11

Block

Cylinder

Frame

θ

DRF

DRF

DRF

-A-

 .02 A

 .04

 .02 A

 .01 Figure 13-14  Applied geometric
variations at contact points

Component tolerances are set as a result of analyzing tolerance stackup in an assembly and determin-
ing how each component dimension contributes to assembly variation.  Processes and tooling are se-
lected to meet the required component tolerances.  Inspection and gaging equipment and procedures are
also determined by the resulting component tolerances. Thus, we see that the performance requirements
have a pervasive influence on the entire manufacturing enterprise. It is the designer’s task to transform
each performance requirement into assembly tolerances and corresponding component tolerances.

There are several assembly features that commonly arise in product design. A fairly comprehensive
set can be developed by examining geometric dimensioning and tolerancing feature controls and forming
a corresponding set for assemblies. Fig. 13-15 shows a basic set that can apply to a wide range of
assemblies.

Note that when applied to an assembly feature, parallelism applies to two surfaces on two different
parts, while GD&T standards only control parallelism between two surfaces on the same part. The same
can be said about the other assembly controls, with the exception of position. Position tolerance in GD&T
relates assemblies of two parts, while the position tolerance in Fig. 13-15 could involve a whole chain of
intermediate parts contributing variation to the position of mating features on the two end parts. An
example of the application of assembly tolerance controls is the alignment requirements in a car door
assembly. The gap between the edge of the door and the door frame must be uniform and flush (parallel in
two planes). The door striker must line up with the door lock mechanism (position).

Each assembly feature, such as a gap or parallelism, requires an open loop to describe the variation.
You can have any number of open loops in an assembly tolerance model, one per critical feature. Closed
loops, on the other hand, are limited to the number of loops required to locate all of the parts in the
assembly. It is a unique number determined by the number of parts and joints in the assembly.

L = J − P +1
where L is the required number of loops, J is the number of joints, and P is the number of parts. For the
example problem:

L = 4 − 3 + 1 = 2
which is the number we determined by inspection of the assembly graph.
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The example assembly has a specified gap tolerance between a cylindrical surface and a plane, as
shown in Fig. 13-6. The vector loop describing the gap is shown in Fig. 13-16. It begins with vector g, on
one side of the gap, proceeds from part-to-part, and ends at the top of the cylinder, on the opposite side
of the gap. Note that vector a, at the DRF of the Frame, appears twice in the same loop in opposite
directions. It is therefore redundant and both vectors must be eliminated. Vector r also appears twice in
the cylinder; however, the two vectors are not in opposite directions, so they must both be included in
the loop.

Vector g, incidentally, is not a manufactured dimension. It is really a kinematic variable, which adjusts
to locate the point on the gap opposite the highest point on the cylinder. It was given zero tolerance,
because it does not contribute to the variation of the gap.

The steps illustrated above describe a comprehensive system for creating assembly models for
tolerance analysis. With just a few basic elements, a wide variety of assemblies may be represented. Next,
we will illustrate the steps in performing a variational analysis of an assembly model.

13.5 Steps in Analyzing an Assembly Tolerance Model

In a 2-D or 3-D assembly, component dimensions can contribute to assembly variation in more than one
direction. The magnitude of the component contributions to the variation in a critical assembly feature is
determined by the product of the process variation and the tolerance sensitivity, summed by worst case

Figure 13-15  Assembly tolerance
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or Root Sum Squared (RSS). If the assembly is in production, actual process capability data may be used
to predict assembly variation. If production has not yet begun, the process variation is approximated by
substituting the specified tolerances for the dimensions, as described earlier.

The tolerance sensitivities may be obtained numerically from an explicit assembly function, as illus-
trated in Chapter 12.  An alternative procedure will be demonstrated, which does not require the derivation
of an explicit assembly function. It is a systematic method, which may be applied to any vector loop
assembly model.

Step 1. Generate assembly equations from vector loops

The first step in an analysis is to generate the assembly equations from the vector loops.  Three scalar
equations describe each closed vector loop. They are derived by summing the vector components in the
x and y directions, and summing the vector rotations as you trace the loop. For closed loops, the compo-
nents sum to zero. For open, they sum to a nonzero gap or angle.

The equations describing the stacked block assembly are shown below. For Closed Loops 1 and 2, hx,
hy, and hθ  are the sums of the x, y, and rotation components, respectively. See Eqs. (13.1) and (13.2). Both
loops start at the lower left corner, with vector a. For Open Loop 3, only one scalar equation (Eq. (13.6)) is
needed, since the gap has only a vertical component. Open loops start at one side of the gap and end at
the opposite side.

Closed Loop 1
hx = a cos(0) + U2 cos(90) + R cos(90 + φ3) + e cos(90 + φ3  − 180) + U3 cos(θ)

+ c cos(−90)+ b cos(−180) = 0
hy = a sin(0) + U2 sin(90) + R sin(90 + φ3) + e sin(90 + φ3  − 180) + U3 sin(θ) (13.1)

+ c sin(−90) + b sin(−180) = 0
hθ = 0 + 90 + φ3  – 180  + 90 − θ − 90 – 90 +180 = 0
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Closed Loop 2
hx = a cos(0) + U1 cos(90) + r cos(0) + r cos(− φ1) + R cos(− φ1 + 180) + e cos(− φ1 − φ2)

+ U3 cos(θ) + c cos(– 90) + b cos(– 180) = 0
hy = a sin(0) + U1 sin(90) + r sin(0) + r sin(− φ1) + R sin(− φ1 + 180) + e sin(− φ1 − φ2)

 + U3 sin(θ) + c sin(–  90) + b sin(− 180) = 0 (13.2)
hθ = 0 + 90 – 90 – φ1 + 180 – φ2 – 180  + 90 – θ – 90 – 90 + 180 = 0

Open Loop 3
Gap = r sin(– 90) + r sin(180) + U1 sin(– 90) + f sin(90) + g sin(0) (13.3)

The loop equations relate the assembly variables: U1, U2, U3, φ 1, φ2, φ3, and Gap to the component
dimensions: a, b, c, e, f, g, r, R, and θ. We are concerned with the effect of small changes in the component
variables on the variation in the assembly variables.

Note the uniformity of the equations. All hx components are in terms of the cosine of the angle the
vector makes with the x-axis. All hy are in terms of the sine. In fact, just replace the cosines in the hx

equation with sines to get the hy equation. The loop equations always have this form. This makes the
equations very easy to derive. In a CAD implementation, equation generation may be automated.

The hθ equations are the sum of relative rotations from one vector to the next as you proceed around
the loop. Counterclockwise rotations are positive. Fig. 13-17 traces the relative rotations for Loop 1. A final
rotation of 180 is added to bring the rotations to closure.

While the arguments of the sines and cosines in the hx and hy equations represent the absolute angle
from the x-axis, the angles are expressed as the sum of relative rotations up to that point in the loop. Using
relative rotations is critical to the correct assembly model behavior. It allows rotational variations to
propagate correctly through the assembly.
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Loop 1
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A shortcut was used for the arguments for vectors U2, c, and b. The sum of relative rotations was
replaced with their known absolute directions. The sum of relative angles for U2 is (− θ1 − θ2 + 90), but it
must align with the angled plane of the frame (θ ).  Similarly, vectors b and c will always be vertical and
horizontal, respectively, regardless of the preceding rotational variations in the loop. Replacing the angles
for U, C, and b is equivalent to solving the hθ equation for θ and substituting in the arguments to eliminate
some of the angle variables. If you try it both ways, you will see that you get the same results for the
predicted variations. The results are also independent of the starting point of the loop. We could have
started with any vector in the loop.

Step 2. Calculate derivatives and form matrix equations

The loop equations are nonlinear and implicit. They contain products and trigonometric functions of the
variables. To solve for the assembly variables in this system of equations would require a nonlinear
equation solver. Fortunately, we are only interested in the change in assembly variables for small changes
in the components. This is readily accomplished by linearizing the equations by a first-order Taylor’s
series expansion.

Eq. (13.4) shows the linearized equations for Loop 1.
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(13.4)

where
δa represents a small change in dimension a, and so on.

Note that the terms have been rearranged, grouping the component variables a, b, c, e, r, R, and θ
together and assembly variables U1, U2, U3, φ1,  φ2, and φ3 together. The Loop 2 and Loop 3 equations may
be expressed similarly.

Performing the partial differentiation of the respective hx, hy, and hθ equations yields the coefficients
of the linear system of equations. The partials are easy to perform because there are only sines and
cosines to deal with. Eq. (13.5) shows the partials of the Loop 1 hx equation.
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(13.5)

Each partial is evaluated at the nominal value of all dimensions. The nominal component dimensions
are known from the engineering drawings or CAD model. The nominal assembly values may be obtained
by querying the CAD model.

The partial derivatives above are not the tolerance sensitivities we seek, but they can be used to
obtain them.

Step 3. Solve for assembly tolerance sensitivities

The linearized loop equations may be written in matrix form and solved for the tolerance sensitivities by
matrix algebra. The six closed loop scalar equations can be expressed in matrix form as follows:

[A]{δX} + [B]{δU} = {0}
where:

[A] is the matrix of partial derivatives with respect to the component variables,
[B] is the matrix of partial derivatives with respect to the assembly variables,
{δX} is the vector of small variations in the component dimensions, and
{δU} is the vector of corresponding closed loop assembly variations.

We can solve for the closed loop assembly variations in terms of the component variations by matrix
algebra:

{δU} = −[B−1A]{δX} (13.6)

The matrix [B-1A] is the matrix of tolerance sensitivities for the closed loop assembly variables.
Performing the inverse of the matrix [B] and multiplying [B-1A] may be carried out using a spreadsheet or
other math utility program on a desktop computer or programmable calculator.
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For the example assembly, the resulting matrices and vectors for the closed loop solution are:
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{δU} = -[B-1A]{δX} (13.7)
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Estimates for variation of the assembly performance requirements are obtained by linearizing the
open loop equations by a procedure similar to the closed loop equations.  In general, there will be a system
of nonlinear scalar equations which may be linearized by Taylor’s series expansion. Grouping terms as
before, we can express the linearized equations in matrix form:

{δV} = [C]{δX} + [E]{δU} (13.8)

where
{δV} is the vector of variations in the assembly performance requirements,
[C] is the matrix of partial derivatives with respect to the component variables,
[E] is the matrix of partial derivatives with respect to the assembly variables,
{δX} is the vector of small variations in the component dimensions, and
{δU} is the vector of corresponding closed loop assembly variations.

We can solve for the open loop assembly variations in terms of the component variations by matrix
algebra, by substituting the results of the closed loop solution. Substituting for {δU}:

{δV} = [C]{δX} − [E][B−1A]{δX}
= [C−Ε B−1A]{δX}

The matrix [C−E B-1A] is the matrix of tolerance sensitivities for the open loop assembly variables. The
B-1A terms come from the closed loop constraints on the assembly. The B-1A terms represent the effect of
small internal kinematic adjustments occurring at assembly time in response to dimensional variations.
The internal adjustments affect the {δV} as well as the {δU}.

It is important to note that you cannot simply solve for the values of {δU} in Eq. (13.6) and substitute
them directly into Eq. (13.8), as though {δU} were just another component variation.  If you do, you are
treating {δU} as though it is independent of {δX}. But {δU} depends on {δX} through the closed loop
constraints. You must evaluate the full matrix [C−E B-1A] to obtain the tolerance sensitivities. Allowing the
B-1A terms to interact with C and E is necessary to determine the effect of the kinematic adjustments on
{δV}. Treating them separately is similar to taking the absolute value of each term, then summing for Worst
Case, rather than summing like terms before taking the absolute value. The same is true for RSS analysis.
It is similar to squaring each term, then summing, rather than summing like terms before squaring.

For the example assembly, the equation for {δV} reduces to a single scalar equation for the Gap
variable.
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δGap = [sin(−90)+sin(180)] δr + sin(90) δf + sin(0) δg + sin(−90)δU1

             = −δr +δf −δU1

Substituting for δU1 from the closed loop results (Eq. (13.7)) and grouping terms:

δGap = − δr + δf − (.3057δa − .3057δb + δc + 1.0457δe + 2.4949δr − 1.2311δR + 11.2825δθ) (13.9)

             = − .3057δa +.3057δb − δc − 1.0457δe − 3.4949δr + 1.2311δR − 11.2825δθ

While Eq. (13.9) expresses the assembly variation δ Gap in terms of the component variations δX, it is
not an estimate of the tolerance accumulation. To estimate accumulation, you must use a model, such as
Worst Case or Root Sum Squares.

Step 4. Form Worst Case and RSS expressions

As has been shown earlier, estimates of tolerance accumulation for δU or δV may be calculated by sum-
ming the products of the tolerance sensitivities and component variations:

Worst Case RSS

δU or δV = Σ |Sij| δxj δU or δV = ( )∑ 2
xjijS δ

Sij is the tolerance sensitivities of assembly features to component variations. If the assembly vari-
able of interest is a closed loop variable δUi, Sij is obtained from the appropriate row of the B-1A matrix. If  δVi

is wanted, Sij comes from the [C-E B-1A] matrix. If measured variation data are available, δxj is the ±3σ
process variation. If production of parts has not begun, δxj is usually taken to be equal to the ±3σ design
tolerances on the components.

In the example assembly, length U1 is a closed loop assembly variable. U1 determines the location of
the contact point between the Cylinder and the Frame. To estimate the variation in U1, we would multiply
the first row of [B-1A] with {δX} and sum by Worst Case or RSS.

Worst Case:
δU1 = |S11|δa + |S12|δb + |S13|δc + |S14|δe + |S15|δr + |S16|δR + |S17|δθ

           =  |.3057| 0.3 + |−.3057| 0.3 + |1| 0.3 + |1.0457| 0.3 + |2.4949| 0.1 + |−1.2311| 0.3 + |11.2825| 0.01745

          = ± 1.6129 mm
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Table 13-1   Estimated variation in open and closed loop assembly features

WC RSSAssembly
Variable

Mean or
Nominal ±δU ±δU

U1 59.0026 mm 1.6129 mm 0.6653 mm
U2 41.4708 mm 1.5089 mm 0.6344 mm
U3 16.3279 mm 0.9855 mm 0.4941 mm
φ1 43.6838° 2.68° 1.94°
φ2 29.3162° 1.68° 1.04°
φ3 17.0000° 1.00° 1.00°

Gap 5.9974 mm 2.2129 mm 0.8675 mm

RSS:
δU1 = [(S11δa)2 + (S12δb)2 + (S13δc)2 + (S14δe)2 + (S15δr)2 + (S16δR)2 + (S17δθ )2].5

                = [(.3057 ⋅ 0.3)2 + (−.3057⋅ 0.3)2 + (1 ⋅ 0.3)2 + (1.0457 ⋅ 0.3)2 + (2.4949 ⋅ 0.1)2 + (−1.2311 ⋅ 0.3)2+
             (11.2825 ⋅ 0.01745)2]. 5

            = ± 0.6653 mm

Note that the tolerance on θ  has been converted to ± 0.01745 radians since the sensitivity is calculated
per radian.

For the variation in the Gap, we would multiply the first row of [C-EB-1A] with {δX} and sum by Worst
Case or RSS.  Vector {δX} is extended to include δf and δg.

Worst Case:
δGap = |S11|δa + |S12|δb + |S13|δc + |S14|δe + |S15|δr + |S16|δR + |S17|δθ + |S18|δf + |S19|δg

               = |– .30573| 0.3 + |.30573| 0.3 + |– 1| 0.3 +|− 1.04569| 0.3 + |– 3.4949| 0.1+ |1.2311| 0.3
+ | −11.2825| 0.01745 + |1| 0.5 + |0| 0

             = ± 2.2129 mm
RSS:
δGap = [(S11δa)2 + (S12δb)2 + (S13δc)2 + (S14δe)2 + (S15δr)2 + (S16δR)2 + (S17δθ) + (S18δf)2 + (S19δg)2]. 5

              = [(−.30573 ⋅ 0.3)2 + (.30573 ⋅ 0.3)2 +(− 1⋅ 0.3)2  + (− 1.04569 ⋅ 0.3)2  + (−3.4949 ⋅ 0.1)2 + (1.2311 ⋅ 0.3)2

                  + (− 11.2825 ⋅ 0.01745)2 + (1 ⋅ 0.5)2  + (0 ⋅ 0)2 ].5

             = ± 0.8675 mm

By forming similar expressions, we may obtain estimates for all the assembly variables (Table 13-1).

Step 5. Evaluation and design iteration

The results of the variation analysis are evaluated by comparing the predicted variation with the specified
design requirement. If the variation is greater or less than the specified assembly tolerance, the expres-
sions can be used to help decide which tolerances to tighten or loosen.

13.5.5.1  Percent Rejects

The percent rejects may be estimated from Standard Normal tables by calculating the number of standard
deviations from the mean to the upper and lower limits (UL and LL).
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The only assembly feature with a performance requirement is the Gap. The acceptable range for
proper performance is: Gap = 6.00 ±1.00 mm. Calculating the distance from the mean Gap to UL and LL in
units equal to the standard deviation of the Gap:
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Z RUL = 263 ppm

RLL = 281 ppm

The total predicted rejects are 544 ppm.

13.5.5.2  Percent Contribution Charts

The percent contribution chart tells the designer how each dimension contributes to the total Gap varia-
tion. The contribution includes the effect of both the sensitivity and the tolerance. The calculation is
different for Worst Case or RSS variation estimates.

Worst Case RSS

∑ ⋅

⋅

=

i
i

j
j

x
x

Gap

x
x

Gap

Cont

δ
∂

∂

δ
∂

∂

%

∑ 







⋅











⋅

=
2

2

%

i
i

j
j

x
x

Gap

x
x

Gap

Cont

δ
∂

∂

δ
∂

∂

It is common practice to present the results as a bar chart, sorted according to magnitude. The results
for the sample assembly are shown in Fig. 13-18.
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Figure 13-18  Percent contribution
chart for the sample assembly
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It is clear that the outside dimension of the Gap, f, is the principal contributor, followed by the radius
R. This plot shows the designer where to focus design modification efforts.

Simply changing the tolerances on a few dimensions can change the chart dramatically.  Suppose we
tighten the tolerance on f, since it is relatively easy to control, and loosen the tolerances on R and e, since
they are more difficult to locate and machine with precision. We will say the Cylinder is vendor-supplied,
so it cannot be modified. Table 13-2 shows the new tolerances.

Table 13-2    Modified dimensional tolerance specifications

Dimension ±Tolerance
Original Modified

a 0.3 mm 0.3 mm
b 0.3 mm 0.3 mm
c 0.3 mm 0.3 mm
e 0.3 mm 0.4 mm
r 0.1 mm 0.1 mm
R 0.3 mm 0.4 mm
θ 1.0° 1.0°
f 0.5 mm 0.4 mm

Now, R and e are the leading contributors, while f has dropped to third. Of course, changing the
tolerances requires modification of the processes. See Fig. 13-19. Tightening the tolerance on f, for ex-
ample, might require changing the feed or speed or number of finish passes on a mill.

Since it is the product of the sensitivity times the tolerance that determines the percent contribution,
the sensitivity is also an important variation evaluation aid.
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Figure 13-19  Percent contribution chart
for the sample assembly with modified
tolerances
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13.5.5.3  Sensitivity Analysis

The tolerance sensitivities tell how the arrangement of the parts and the geometry contribute to assembly
variation. We can learn a great deal about the role played by each dimension by examining the sensitivi-
ties. For the sample assembly, Table 13-3 shows the calculated Gap sensitivities.

Table 13-3   Calculated sensitivities for the Gap

Dimension Sensitivity

a -0.3057
b 0.3057
c -1.0
e -1.0457
r -3.4949
R 1.2311
θ -11.2825
f 1.0

Note that the sensitivity of θ is calculated per radian.
For a 1.0 mm change in a or b, the Gap will change by 0.3057 mm. The negative sign for a means the

Gap will decrease as a increases. For each mm increase in c, the Gap decreases an equal amount. This
behavior becomes clear on examining Fig. 13-12. As a increases 1.0 mm, the Block is pushed up the
inclined plane, raising the Block and Cylinder by the tan(17°) or 0.3057 and decreasing the Gap. As b
increases 1.0 mm, the plane is pushed out from under the Block, causing it to lower the same amount.
Increasing c 1.0 mm, causes everything to slide straight up, decreasing the Gap.

Dimensions e, r, R, and θ are more complex because several adjustments occur simultaneously. As r
increases, the Cylinder grows, causing it to slide up the wall, while maintaining contact with the concave
surface of the Block. As the Cylinder rises, the Gap decreases. As R increases, the concave surface moves
deeper into the block, causing the Cylinder to drop, which increases the Gap. Increasing e causes the
Block to thicken, forcing the front corner up the wall and pushing the Block up the plane. The net effect is
to raise the concave surface, decreasing the Gap. Increasing θ causes the Block to rotate about the front
edge of the inclined plane, while the front corner slides down the wall. The wedge angle between the
concave surface and the wall decreases, squeezing the Cylinder upward and decreasing the Gap. The
large sensitivities for r and θ are offset by their small corresponding tolerances.

13.5.5.4  Modifying Geometry

The most common geometry modification is to change the nominal values of one or more dimensions to
center the nominal value of a gap between its UL and LL. For example, if we wanted to change the Gap
specifications to be 5.00 ±1.000 mm, we could simply increase the nominal value of c by 1.00 mm. Since the
sensitivity of the Gap to c is –1.0, the Gap will decrease by 1.0 mm.

Similarly, the sensitivities may be modified by changing the geometry. Since the sensitivities are
partial derivatives, which are evaluated at the nominal values of the component dimensions, they can only
be changed by changing the nominal values. An interesting exercise is to modify the geometry of the
example assembly to make the Gap insensitive to variation in θ ; that is, to make the sensitivity of θ go to
zero. You will need nonlinear equation solver software to solve the original loop equations (Eqs. (13-4),
(13-5), and (13-6)), for a new set of nominal assembly values. Solve for the kinematic assembly variables:
U1, U2, U3, φ1, φ2, and φ3, corresponding to your new nominal dimensions: a, b, c, e, r, R, θ, f, and Gap.

Joe Sulton


Joe Sulton


Joe Sulton
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The sensitivity of θ will decrease to nearly zero if we increase b to a value of 40 mm.  We must also
increase c to 35 mm to reduce the nominal Gap back to 6.00 mm. The [A], [B], [C], and [E] matrices will all
need to be re-evaluated and solved for the variations. The modified results are shown in Table 13-4.

Table 13-4   Calculated sensitivities for the Gap after modifying geometry

Dimension Nominal ±Tolerance Sensitivity
a 10 mm 0.3 -0.3057
b 40 mm 0.3 0.3057
c 35 mm 0.3 -1.0
e 55 mm 0.4 -1.0457
r 10 mm 0.1 -3.4949
R 40 mm 0.4 1.2311
θ 17° 1.0° -0.3478
f 75 mm 0.4 1.0

Notice that the only sensitivity to change was θ  (per radian). This is due to the lack of coupling of b
and c with the other variables. The calculated variations are shown in Table 13-5.

The new percent contribution chart is shown in Fig. 13-20. Based on the low sensitivity, you could
now increase the tolerance on θ without affecting the Gap variation.

Step 6. Report results and document changes

The final step in the assembly tolerance analysis procedure is to prepare the final report.  Figures, graphs,
and tables are preferred. Comparison tables and graphs will help to justify design decisions. If you have
several iterations, it is wise to adopt a case numbering scheme to identify each table and graph with its
corresponding case. A list of case numbers with a concise summary of the distinguishing feature for each
would be appreciated by the reader.

Table 13-5   Variation results for modified nominal geometry

WC RSSAssembly
Variable

Mean or
Nominal ±δU ±δU

U1 59.0453 mm 1.6497 mm 0.7659 mm
U2 41.5135 mm 1.9088 mm 0.8401 mm
U3 26.7848 mm 0.9909 mm 0.4908 mm
φ1 43.6838° 2.80° 1.97°
φ2 29.3162° 1.80° 1.08°
φ3 17° 1.00° 1.00°

Gap 5.9547 mm 2.1497 mm 0.8980 mm
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13.6 Summary

The preceding sections have presented a systematic procedure for modeling and analyzing assembly
variation. Some of the advantages of the modeling system include:
• The three main sources of variation may be included: dimensions; geometric form, location, and

orientation; and kinematic adjustments.
• Assembly models are constructed of vectors and kinematic joints, elements with which most design-

ers are familiar.
• A variety of assembly configurations may be represented with a few basic elements.
• Modeling rules guide the designer and assist in the creation of valid models.
• It can be automated and integrated with a CAD system to achieve fully graphical model creation.

Advantages of the analysis system include:
• The assembly functions are readily derived from the graphical model.
• Nonlinear, implicit systems of equations are readily converted to a linear system.  Tolerance sensitivi-

ties are determined by a single, standard, matrix algebra operation.
• Statistical algorithms estimate tolerance stackup accurately and efficiently without requiring repeated

simulations.
• Once expressions for the variation in assembly features have been derived, they may be used for

tolerance allocation or “what-if?” studies without repeating the assembly analysis.
• Variation parameters useful for evaluation and design are easily obtained, such as: the mean and

standard deviation of critical assembly features, sensitivity and percent contribution of each compo-
nent dimension and geometric form variation, percent rejects, and quality level.

• Tolerance analysis models combine design requirements with process capabilities to foster open
communication between design and manufacturing and reasoned, quantitative decisions.

• It can be automated to totally eliminate manual derivation of equations or equation typing.
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Figure 13-20  Modified geometry yields
zero θ contribution
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A CAD-based tolerance analysis system based on the procedures demonstrated previously has been
developed. The basic organization of the Computer-Aided Tolerancing System (CATS) is shown sche-
matically in Fig. 13-21. The system has been integrated with a commercial 3-D CAD system, so it looks and
feels like the designer’s own system. Many of the manual tasks of modeling and analysis described above
have been converted to graphical functions or automated.

CATS Application Interface

CATS
Modeler

CATS
Analyzer

CAD
Database

Mfg
Process

Database

3-D CAD System

Figure 13-21  The CATS System

Tolerance analysis has become a mature engineering design tool. It is a quantitative tool for concur-
rent engineering. Powerful statistical algorithms have been combined with graphical modeling and evalu-
ation aids to assist designers by bringing manufacturing considerations into their design decisions.
Process selection, tooling, and inspection requirements may be determined early in the product develop-
ment cycle. Performing tolerance analysis on the CAD model creates a virtual prototype for identifying
variation problems before parts are produced. Designers can be much more effective by designing assem-
blies that work in spite of manufacturing process variations. Costly design changes to accommodate
manufacturing can be reduced. Product quality and customer satisfaction can be increased. Tolerance
analysis could become a key factor in maintaining competitiveness in today’s international markets.
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